Intelligent phase plane switching control of pneumatic artificial muscle manipulators with magneto-rheological brake

Tu Diep Cong Thanh, Kyoung Kwan Ahn *

School of Mechanical and Automotive Engineering, University of Ulsan, San 29, Muger 2dong, Nam-gu, Ulsan 680-764, Republic of Korea

Received 4 May 2005; accepted 28 October 2005

Abstract

The pneumatic artificial muscle (PAM) is undoubtedly the most promising artificial muscle for the actuation of new types of industrial robots such as rubber actuator and PAM manipulators because it provides these advantages such as high strength and high power/weight ratio, low cost, compactness, ease of maintenance, cleanliness, readily available and cheap power source, inherent safety and mobility assistance to humans performing tasks. However, some limitations still exist, such as the air compressibility and the lack of damping ability of the actuator bring the dynamic delay of the pressure response and cause the oscillatory motion. In addition, the nonlinearities in the PAM manipulator still limit the controllability. Therefore, it is not easy to realize motion with high accuracy and high speed and with respect to various external inertia loads in order to realize a human-friendly therapy robot.

To overcome these problems a novel controller which harmonizes a phase plane switching control method (PPSC) with conventional PID controller and the adaptabilities of neural network, is newly proposed. In order to realize satisfactory control performance a variable damper, magneto-rheological brake (MRB), is equipped to the joint of the manipulator. Superb mixture of conventional PID controller and an intelligent phase plane switching control using neural network (IPPSC) brings us a novel controller. The experiments were carried out in practical PAM manipulator and the effectiveness of the proposed control algorithm was demonstrated through experiments, which had proved that the stability of the manipulator can be improved greatly in a high gain control by using MRB with IPPSC and without regard for the changes of external inertia loads.

© 2005 Elsevier Ltd. All rights reserved.

Keywords: Pneumatic artificial muscle; Magneto-rheological brake; Phase plane switching control; Manipulator; Neural network

1. Introduction

Industrial robots have used three primary power sources: electric motors, hydraulic cylinders and pneumatic cylinders. Each of these actuation systems has advantages and disadvantages (Table 1). For most robotic applications, the common actuator technology is electric system with very limited use of hydraulics or pneumatics. But electrical systems suffer from relatively low power/weight ratio and especially in the case of human-friendly robot, or human coexisting and collaborative systems such as a medical and welfare fields. Therefore, sharing the robot working space with its environment is problematic. Conversely, the human arm is not very accurate, but its lightness and joint flexibility due to the human musculature give it a natural capability for working in contact. The orientation of industrial robotics toward applications needing greater proximity between the robot and the human operator has recently led researchers to develop novel actuator sharing some analogies with natural skeletal muscle. A novel PAM actuator, which has achieved increased popularity to provide these advantages above, has been regarded during the recent decades as an interesting alternative to hydraulic and electric actuators and applied to construct a therapy robot in the case of having high level of safety for humans required. However, the air compressibility...
and the lack of damping ability of the PAM manipulator bring the dynamic delay of the pressure response and cause the oscillatory motion. Therefore, it is not easy to realize the performance of transient response with high speed and with respect to various external inertia loads in order to realize a human-friendly therapy robot.

The limitations of the PAM manipulator have promoted research into a number of control strategies, such as a Kohonen-type neural network for the position control of robot end-effector within 1 cm after learning [1]. Recently, the authors have developed a feed forward neural network controller with an error of 1° [2]. After applying a feed forward + PID-type controller approach [3], the authors are turning to an adaptive controller [4–6] and the error is better than ±0.5° [7]. In addition, PID control [8], sliding mode control [9,10], fuzzy PD + I learning control [11], fuzzy + PID control [12], robust control [10,13,14], feedback linearization control [15], feed forward control + fuzzy logic [16], variable structure control algorithm [17], H infinity control [18,19] and so on, have been applied to control the PAM manipulator. Though these systems were successful in addressing smooth actuator motion in response to step inputs, the manipulator must be controlled slowly in order to get stable, accurate position control and the external inertia load was also assumed to be constant or slowly varying. Assuming that PAM manipulator is utilized in therapy robot in the future, which is the final goal of our research, it is necessary to realize fast response, even if the external inertia load changes severely. But fast response cannot be obtained in most control system. At the same time, the external inertia loads cannot always be known exactly. Therefore, it is necessary to propose a new control algorithm, which is applicable to a very compressible PAM system with various loads.

Intelligent control techniques have emerged to overcome some deficiencies in conventional control methods in dealing with complex real-world systems such as PAM manipulator. Many new control algorithms based on a neural network have been proposed. An intelligent control using a neuro-fuzzy network was proposed by Iskarous and Kawamura [20]. A hybrid network that combines fuzzy and neural network was used to model and control complex dynamic systems, such as the PAM system. An adaptive controller based on the neural network was applied to the artificial hand, which is composed of the PAM [21]. Here, the neural network was used as a controller, which had the form of compensator or inverse of the model and it was not easy to apply these control algorithms to the greatly changing inertia load systems. In addition, these control algorithms were not yet to reconcile both damping and response speed in high gain control.

To overcome these problems, a new technology, electrorheological fluid damper (ER damper), has been applied to the PAM manipulator. Noritsugu and his team have used ER damper to improve the control performance of the PAM manipulator with PI controller and pulse code modulated on–off valves [22,23]. By separating the region where the damper produces an damping torque in order to reconcile both damping and response speed in high gain control, the results show that the ER damper is one of effective methods to develop a practically available human-friendly robot by using the PAM manipulator and also the performance of position control is improved without the decrease of response speed. However, some limitations still exist, such as ER fluid (ERF) requires extremely high control voltage (kV) which is problematical and potentially dangerous, only operates in a narrow range of temperature which cannot be applied for PAM manipulator, and has also the characteristics of nonlinearity. Because ERF has many unacceptable disadvantages, magneto-rheological fluid (MRF) attracts people’s attention with these advantages in Table 2, in recent years.

Thus, the goal of this paper is to implement MRB to develop a fast accurate pneumatic control system by IPPSC and without regard for the changes of external inertia loads. The experiments were carried out in practical PAM manipulator and the effectiveness of the proposed control algorithm was demonstrated through experiments, which had proved that the stability of the manipulator can be well improved in a high gain control by using MRB with IPPSC and without decreasing the response speed and low stiffness of manipulator.

2. Experimental setup

2.1. Experimental apparatus

The schematic diagram of the PAM manipulator is shown in Fig. 1. The hardware includes an IBM compatible personal computer (Pentium 1 GHz) which calculates the control input and controls the proportional valve (FESTO, MPYE-5-1/8HF-710 B) and magneto-rheological brake (LORD, MRB-2107-3 Rotary Brake), through D/A board (Advantech, PCI 1720), and two MRB is controlled by D/A broad through voltage to current converter, Wonder Box Device Controller Kit (LORD, RD-3002-03). And the lists of experimental hardware are tabulated in Table 3.
rotating torque is generated by the pressure difference between the antagonistic artificial muscles and the external load is rotated as a result (Fig. 2). A joint angle, θ, is detected by rotary encoder (METRONIX, H40-8-3600ZO) and the air pressure into each chamber is also measured by the pressure sensors (FESTO, SDE-10-10) and fed back to the computer through 24-bit digital counter board (Advantech, PCL 833) and A/D board (Advantech, PCI 1711), respectively. The external inertia load could be changed from 20 kgf cm2 to 200 kgf cm2, which is a 1000 (%) change with respect to the minimum inertia load condition. The experiments are conducted under the

| Table 2
<table>
<thead>
<tr>
<th>Comparison of rheological fluids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magneto-rheological fluid</td>
</tr>
<tr>
<td>Maximum yield stress</td>
</tr>
<tr>
<td>Viscosity</td>
</tr>
<tr>
<td>Operable temperature range</td>
</tr>
<tr>
<td>Stability</td>
</tr>
<tr>
<td>Response time</td>
</tr>
<tr>
<td>Density</td>
</tr>
<tr>
<td>Maximum energy density</td>
</tr>
<tr>
<td>Power supply</td>
</tr>
</tbody>
</table>

![Fig. 1. Schematic diagram of PAM manipulator.](image)

| Table 3
<table>
<thead>
<tr>
<th>Experimental hardware</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
</tbody>
</table>
pressure of 0.4 MPa and all control software is coded in C program language. A photograph of the experimental apparatus is shown in Fig. 3.

2.2. Characteristics of MRB

Construction of MRB was shown in Fig. 4. The rotor in Fig. 4 is fixed to the shaft, which can rotate in relation to housing. Between rotor and housing there is a gap filled with MRF. Braking torque of MRB can be controlled by the electric current in its coil. An apparent viscosity of MRF is changed at few milliseconds after the application of a magnetic field, and goes back to the normal viscosity with no magnetic field.

The following experiments are performed to investigate the characteristics of MRB, which measurement data is shown in Fig. 5 and Table 4. MRB is connected with a torque transducer and a servomotor in series. In the experiments, the rotational speed is changed from 100 rpm to 1000 rpm and the current applied for MRB is changed from 0 A to 1 A. The reason for choosing this range of rotational speed and current is that the response of system does not reach to 1000 rpm and the maximum current applied for MRB is 1 A. Fig. 5 shows the damping torque with respect to the change of the input current (a) and rotational speed (b) of MR brake. From Fig. 5, it is clear that the damping torque of MRB is independent of rotational speed and almost proportional to input current. Thus an Eq. (1) holds between the inputs current \(I \) and damping torque \(T_b \)

\[
T_b = f(I) = a + bI
\]

Here, \(a \) and \(b \) are constants.

3. Control system

3.1. Positioning control system

To control this PAM manipulator a conventional PID control algorithm is applied in this paper as the basic...
controller. The controller output can be expressed in the time domain as

\[u(t) = K_p e(t) + \frac{K_p}{T_i} \int_0^t e(t) \, dt + K_p T_d \frac{de(t)}{dt} \quad (2) \]

Taking the Laplace transform of (2) yields

\[U(s) = K_p E(s) + \frac{K_p}{T_i s} E(s) + K_p T_d s E(s) \quad (3) \]

and the resulting PID controller transfer function is

\[\frac{U(s)}{E(s)} = K_p \left(1 + \frac{1}{T_p s} + T_d s \right) \quad (4) \]

A typical real-time implementation at sampling sequence \(k \) can be expressed as

\[u(k) = K_p e(k) + u(k-1) + \frac{K_p T}{T_i} e(k) \]
\[+ K_p T_d \frac{e(k) - e(k-1)}{T} \quad (5) \]

where \(u(k) \) and \(e(k) \) are the control input to the control valve and the error between the desired set point and the output of joint, respectively.

In addition, MRB is one of effective methods to improve the control performance of the PAM manipulator by reconciling both the damping and response speed because it works in only the regions where the acceleration or deceleration is too high. Here, \(s \) is Laplace operator, \(T_a \) is torque produced by manipulator, \(T_c \) is constant torque and \(K_{ED} \) determines a gain for the torque proportional to the angular speed \(_h \), \(V_c \) is a control voltage of source calculated from Eq. (1) to produce \(T_c \). A direction of a damping torque is every time opposite to the rotary direction of the arm. So Eq. (6) below indicates that the damper produces a torque \(T_b \).

\[T_b = \left(K_{ED} _h + T_c \right) \text{sign}(_h) \quad (6) \]

The structure of the proposed phase plane switching control method is shown in Fig. 6.

3.2. Conventional phase plane switching control method (PPSC)

The damping torque \(T_b \) improves the damping performance of the manipulator. Since the damping torque
every time acts in the direction against the rotational direction of manipulator, its acceleration performance is degraded. In the region that the joint angle of the arm approaches to the desired angle, $a \sim b$, $c \sim d$ in Fig. 7(a), the current is not applied not to interfere the movement of the arm, since the high response speed is required. In the region the arm passes the desired angle, i.e. the diagonally shaded areas of $b \sim c$, $d \sim e$ in Fig. 7(a), a current is applied to improve the damping performance to converge to the desired angle quickly. To determine whether the magnetic field should be applied or not, the phase plane shown in Fig. 7(b) is used. The horizontal axis in the phase plane corresponds to joint angle deviation e between the desired angle $θ_r$ and the joint angle $θ$, and the vertical axis corresponds to the derivation of the deviation $\dot{e} = \frac{de}{dt} = -\dot{θ}$. Each point $a \sim e$ on the phase plane corresponds to each point $a \sim e$ in Fig. 7(a). Here, the region with the application of current are controlled by b [s$^{-1}$], the gradient of the line shown in Fig. 7(b). The region under the application of the damping torque expands as $|h|$ decrease.

3.3. Experimental results of PPSC

The experiments were carried out with two cases of external inertia loads (20, 60 kgf cm2) and the sampling time of 0.001 s in practical PAM manipulator and the control parameters of the PPSC controller were set to be $K_p = 1000 \times 10^{-6}$, $K_i = 10 \times 10^{-6}$, $K_d = 130 \times 10^{-6}$, (PID controller), $T_c = 0.5$, $h = -20$ with various K_{ED} (0.010, 0.015, 0.020) in experiment condition 1 (20 kgf cm2) and $K_{ED} = 0.015$, $T_c = 0.5$ with various h (-10, -20, -50) in experiment condition 2 (60 kgf cm2). These parameters were obtained by trial-and-error through experiments. The experimental results with respect to the experimental condition 1 and condition 2 were shown in Figs. 8 and 9, respectively. From these experimental results, it is understood that the settling time becomes very big in some value of design parameters of switching controller. To guarantee the control performance, the control parameters must be tuned adaptively and we proposed phase plane switching control with neural network newly, which is explained in detail in next section. All experiments with conventional
phase plane switching control method were carried out by the condition \((K_{\text{ED}} = 0.015, \ T_{c} = 0.5 \) and \(h = -20 \) of phase plane from now on.

4. Proposed intelligent phase plane switching control using neural network (IPPSC)

4.1. Structure of IPPSC

From the experimental results, modification of control parameters of PPSC must be adjusted to realize more accurate control. It is obvious that the PPSC is limited because the \(K_{\text{ED}} \) parameter is constant. This means that the damping torque is not adaptable and optimal in any case. Here, we propose an intelligent phase plane switching control, which has the adaptability of control parameter to minimize the position error. With the capacity of learning and adaptability of neural network, the proposed controller can solve these problems. The damping torque will be tuned adaptively and optimally in order to minimize the position error without respect to the variation of external inertia loads.

Fig. 10 shows the structure of IPPSC. In Fig. 10, the proportional gain \(K_{\text{ED}} \) in Fig. 6 was modified by neural network. The block diagram of neural network is shown in Fig. 11. Here \(K_{\text{E}}(k), \ K_{\text{ED}}(k), \ e(k), \ e_{D}(k), \ x(k) \) and \(f(x) \) are the proportional gain, the derivative gain, the system error between desired angle output and output of joint of the PAM manipulator, the difference of the system error, control input of MRB and sigmoid function of neural network, respectively. The sigmoid function, \(f(x) \), which has a nonlinear relation is presented in the following equation:

\[
f(x) = \frac{2(1 - e^{-x/T_x})}{Y_g(1 + e^{x/Y_g})}
\]

where \(x \) is the input of sigmoid function and \(Y_g \) is the parameter determining its shape. Fig. 12 shows the shapes of sigmoid function with various \(Y_g \). As shown in Eq. (7), the sigmoid function \(f(x) \) becomes linear when \(Y_g \) approaches zero.

We have two-layered nonlinear neurons. Neural networks are trained by the conventional back propagation algorithm to minimize the system error between the output of joint of the PAM manipulator and desired angle.

In Fig. 11, the input signal of the sigmoid function in the output layer, \(x(k) \), becomes:

\[
x(k) = K_{\text{E}}(k)e(k) + K_{\text{ED}}(k)e_{D}(k)
\]

where

\[
e(k) = \theta_{i}(k) - \theta(k)
\]

\[
e_{D}(k) = \frac{e(k)(1 - z^{-1})}{\Delta T}
\]

\(\Delta T \) is the sampling time, \(z \) is the operator of Z-transform, \(k \) is the discrete sequence, \(\theta_{i}(k) \) and \(\theta(k) \) are desired angle and output of joint of the PAM manipulator, respectively.

The damping torque of phase plane switching control using neural network can be obtained as the following equation:

\[
T_{b}(k) = (f(x(k)) + T_{c})\text{sign}(\dot{\theta})
\]

4.2. Learning algorithm of neural network

From Eq. (10), in order to get the optimal value of damping torque, the control parameters \(K_{\text{E}} \) and \(K_{\text{ED}} \) must be adjusted automatically in order to minimize the position error.

To tune \(K_{\text{E}} \) and \(K_{\text{ED}} \), the steepest descent method using the following equation was applied:

\[
K_{\text{E}}(k + 1) = K_{\text{E}}(k) - \eta_{\text{E}} \frac{\partial E(k)}{\partial K_{\text{E}}}
\]

\[
K_{\text{ED}}(k + 1) = K_{\text{ED}}(k) - \eta_{\text{ED}} \frac{\partial E(k)}{\partial K_{\text{ED}}}
\]

where \(\eta_{\text{E}} \) and \(\eta_{\text{ED}} \) are learning rates determining convergence speed, and \(E(k) \) is the error defined by the following equation:
These following equations are derived by using Eqs. (8) and (12):

$$E(k) = \frac{1}{2}(\theta_r(k) - \theta(k))^2$$

From Eq. (11), using the chain rule, we get the following equations:

$$\frac{\partial E(k)}{\partial K_E} = \frac{\partial E(k)}{\partial \theta} \frac{\partial \theta(k)}{\partial u} \frac{\partial u(k)}{\partial x} \frac{\partial x(k)}{\partial K_E}$$

$$\frac{\partial E(k)}{\partial K_{ED}} = \frac{\partial E(k)}{\partial \theta} \frac{\partial \theta(k)}{\partial u} \frac{\partial u(k)}{\partial x} \frac{\partial x(k)}{\partial K_{ED}}$$

These following equations are derived by using Eqs. (8) and (12):

$$\frac{\partial E(k)}{\partial \theta} = -(\theta_r(k) - \theta(k)) = -e(k)$$

$$\frac{\partial u(k)}{\partial x} = f'(x(k))$$

$$\frac{\partial x(k)}{\partial K_E} = e(k)$$

$$\frac{\partial x(k)}{\partial K_{ED}} = e_D(k)$$

And the following expression can be derived from these Eqs. (13) and (14):

$$\frac{\partial E(k)}{\partial K_E} = -e(k) \frac{\partial \theta(k)}{\partial u} f'(x(k))e(k)$$

$$\frac{\partial E(k)}{\partial K_{ED}} = -e(k) \frac{\partial \theta(k)}{\partial u} f'(x(k))e_D(k)$$

and

$$f'(x) = \frac{4e^{-xY_g}}{(1 + e^{-xY_g})^2}$$

As done by Yamada and Yabuta [24], for convenience, $\frac{\partial \theta(k)}{\partial u} = 1$ is assumed. Then Eq. (11) is expressed as follows:

$$K_E(k + 1) = K_E(k) + \eta_E e(k) \frac{4e^{-xY_g}}{(1 + e^{-xY_g})^2}$$

$$K_{ED}(k + 1) = K_{ED}(k) + \eta_{ED} e(k) e_D(k) \frac{4e^{-xY_g}}{(1 + e^{-xY_g})^2}$$

The effectiveness of the proposed IPPSC with tuning algorithm of damping torque will be demonstrated through experimental results with various external inertia loads.
4.3. Experimental results

The experiments were carried out with three cases of external inertia loads (20, 60 and 200 kgf cm\(^2\)). The initial control parameters of IPPSC were set to be \(T_c = 0.5\), \(h = -10\), \(Y_c = 0.3\), \(K_E = 0.010\), \(K_{ED} = 0.010\), \(\eta_E = 170 \times 10^{-8}\) and \(\eta_{ED} = 1 \times 10^{-8}\). These control parameters were obtained by trial-and-error through experiments. Thus, from now on, these control parameters were applied for the IPPSC in all case of experiments.

In Fig. 13, comparisons were made between the conventional PID controller, PPSC and IPPSC with respect to load condition 1 (20 kgf cm\(^2\)). In the experiments, the joint angle of PAM manipulator was in good agreement with that of reference by using PPSC. However, it has too large settling time because of fixed parameters of switching controller. We have a very good performance of the PAM manipulator in the case of using IPPSC. It is clear that the newly proposed controller using neural network was very effective in this experimental condition. The effectiveness of the proposed control algorithm with neural network was also shown in detail in Fig. 14. The damping torque was not applied for fast response when the manipulator starts to move and the damping torque was generated by MRB to the rotational axis of PAM manipulator in order to reduce the overshoot and oscillation when the manipulator reaches the desired angle. In addition, during the experiment of the PAM manipulator, the control parameters \(K_E\) and \(K_{ED}\) was tuned adaptively by neural network to minimize the position error.

Next, experiments were executed to investigate the control performance with various external inertia loads. Fig. 15 shows the comparison between the conventional PID controller, PPSC and IPPSC in the case of the load condition 2 (60 kgf cm\(^2\)). From the experimental results, it was found that a good control performance and strong robustness were obtained without respect to the variation of external inertia load by using IPPSC. In Fig. 16, the experimental result of IPPSC with external inertia load condition 2 was shown in detail. From these experimental results, the damping torque was applied and released very frequently according to the approach to the desired angle. It was demonstrated that the proposed algorithm was effective in the case of various external inertia loads.

In order to demonstrate the proposed IPPSC, the external inertia load with 10 times larger with respect to the minimum inertia load condition was applied to the PAM manipulator. Experiments were conducted to compare the system response of PID controller, PPSC and IPPSC.
under the external load condition 3 \((200 \text{ kgf cm}^2)\) in Fig. 17. With up to 10 times bigger external inertia load with respect to the minimum external inertia load, a good control performance was also obtained in the case of PPSC, but it has too large settling time due to the fixed control parameter of PPSC. With newly proposed IPPSC, the overshoot was almost reduced and the steady state error was reduced within \(\pm 0.025^\circ\). Fig. 18 shows the experimental results of IPPSC in detail with respect to the external inertia load condition 3. It was concluded that the proposed controller was very effective in the high gain control, good control performance, fast response, and strong robust stability with 10 times changes of external inertia load.

From these results, we can conclude that newly proposed IPPSC is one of the most effective methods to develop a practically available human-friendly robot by using PAM manipulator with MRB, which made a challenging and appealing system for modeling and control design.

In the near future, these develop control algorithms are anticipated applying to PAM manipulator for human-friendly therapy robot.

5. Conclusion

In this paper, a newly proposed phase plane switching control using neural network was applied to the PAM manipulator with MRB in order to improve the control performance with various external inertia loads.

From the experimental results, the damping torque of MRB was controlled by the applying magnetic field strength and the position control performance was improved without the decrease of response speed by separating the region where the damper produces an damping torque by phase plane switching control method.

In addition, to have optimal control parameters for the proposed phase plane switching control method, the neural network was used. The structure and leaning algorithm of neural network controller were very simple and applicable to any control system in order to minimize the position error.

From the experimental results, the newly proposed IPPSC was very effectively in high gain control with respect to the 1000 (\%) external inertia load variation. And the
steady state error with respect to various loads was reduced within ±0.025°.

The results show that the IPPSC is one of effective methods to develop a practically available human-friendly robot by using the PAM manipulator.

Acknowledgement

This work was partly supported by 2005 Research Fund of University of Ulsan.

References